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NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences 
scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new 
edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be 
accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts 
& Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, 
authors, publishers, and institutions sets it apart from other research  databases.  The  inclusion  of 
News  of  NAS  RK.  Series  of  geology  and  technical sciences in the Emerging Sources Citation 
Index demonstrates our dedication to providing the most relevant and influential content of geology 
and engineering sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология және 
техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің жаңаланған 
нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл 
индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation 
Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке 
қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен 
мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және 
техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық 
үшін ең өзекті және беделді геология және техникалық ғылымдар бойынша контентке 
адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических 
наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии 
Web of Science. Содержание в этом индексировании находится в стадии рассмотрения 
компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index 
Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of 
Science предлагает качество   и  глубину   контента   для   исследователей,  авторов,  
издателей  и  учреждений. Включение Известия НАН РК. Серия геологии и технических 
наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее 
актуальному и влиятельному контенту по геологии и техническим наукам для нашего 
сообщества.
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PREDICTION OF THE CUTTING RESISTANCE FORCE OF THE 
SOIL CONTAINING STONY FRACTIONS

Abstract. Soils containing stony inclusions can be represented as a soil-stone mixture with a different 
content of stony inclusions. This mechanical mixture is mainly a source of generating random loads and 
premature fatigue destruction of the metal structure of the earthmoving machine during its operation, increasing 
the cost of soil development. In order to predict the strength of the cutting resistance has been developed 
of the soil containing a spherical rocky inclusion, an analytical model based on the theory of the ultimate 
equilibrium of the bulk medium, dimensional analysis of dependence parameters and similarity principles.  
The principle of dividing the surface of a rocky inclusion is applied into elementary ball retaining belts, to 
which components of passive ground pressure are applied. Stress zones are conditionally distinguished on the 
surface of the cutting tool (homogeneous zone), and around the rocky inclusion (rocky zone). In the absence 
of a rocky inclusion, the resistance force of a homogeneous ground to cutting is calculated. The value of the 
resistance force of the soil is influenced by the strength parameters and the geometry of the cutting of the soil, 
the size of the rocky inclusion and the quantitative content of stones in the soil. 	

The types of soil destruction with rocky inclusion are determined depending on the coordinate of the action 
of the cutting element. The correctness of the developed model is evaluated in comparison with experimental 
data. A computational analysis is carried out of the dynamics of the cutting resistance force arising from 
the heterogeneity and structural randomness of soils containing rocky inclusions. With an increase in the 
content of stones in the soil, the values of the angle of friction of the soil against the working body and the 
specific cohesion of the soil increase, which ultimately cause an increase in the strength of resistance of soils 
containing stony inclusions to cutting.					

It should be noted that the geometric shape of stony inclusions in the soil array varies randomly, and 
the above technique allows us to develop a model for predicting the strength of resistance to cutting of soil 
containing various stony inclusions, for example ellipsoid shape.

Key words: Soils containing stony fractions, stony fractions, cutting resistance force, analytical model, 
theory of the limiting equilibrium of a loose medium, dimensional analysis, structural state, heterogeneity, 
structural randomness.

Introduction. There is a tendency in the world to automate the process of digging soil with earthmoving 
machines [1] - [2]. The effective implementation of the plan for the development of heterogeneous soils by 
earthmoving machines mainly depends on taking into account the ground conditions and power constraints on 
the working equipment [3]. It is known that soils contain stony fractions in different amounts, their geometric 
shape and size, and the depth of their occurrence in the soil mass change randomly. Soils containing stony 
fractions can be represented as a soil-stone mixture with a different content of stony fractions by mass. 

The metal structure of the working equipment of earthmoving machines undergoes random loading 
processes during operation. The structure of these random processes depends mainly on the presence of solid 
large rock fragments in the ground – stony fractions. The area of stony soils in the Kyrgyz Republic only in 
the zone of agriculture is about 3809 thousand hectares, including: slightly stony – 1477 thousand hectares; 
medium stony – 1495 thousand hectares; strongly stony -10.4 thousand hectares [4].

Methods for determining the parameters of both homogeneous soil and soil with rocky inclusions 
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have been developed to predict the strength of soil resistance, modeling the trajectories of the excavator’s 
working equipment in automatic mode [5] - [7]. The soil containing stony fractions is a type of uneven 
loose sedimentary material consisting mainly of stone, fine-grained soil, water and pores, which is located 
between the homogeneous soil and the fractured rock mass of the Quaternary period. The strength and 
deformation characteristics of the stony fractions are directly affected by its structural state: the number, 
location, shape, cementation of block stones and porosity. On the basis of three-dimensional modeling, a 
mesostructural model of a stony fractions was developed and used to model shear strain curves [8]. In [9] the 
deformation characteristics of the shear zone and the movement of block stones in stony fractions are studied 
experimentally. 		

Analytical [10] - [13] and numerical models [14] - [19] have been developed to predict the strength of soil 
resistance to cutting. In the work [11], the cutting resistance force is determined without taking into account 
the effects of the angle, cutting width, and features of the normal and tangent components of the passive 
ground pressure of a homogeneous and rocky zone. The volume of the soil is determined based on the pre-set 
values of the shear angles of the central and lateral parts of the fracture slot. 	

Based on the Poisson distribution of random events (components of the drag force) in the half-space of the 
bulk material Z. Korzen [12] established a mathematical regression dimensionless model of the resistance of 
inhomogeneous rocks to cutting with a curved cutting tool. To establish the coefficients of the mathematical 
model, active orthogonal experiments were carried out involving the cutting geometry, humidity, velocity, 
and average size of mineral rock particles. The regression model does not take into account the cohesive and 
frictional properties, which are the main factors that affect the strength of the resistance of the soil containing 
stony fractions to cutting. 

The aim of the study is to develop an analytical model for predicting the cutting resistance of soil containing 
stony fractions.									       

Physical characteristics of the dimensional cutting space of soils with stony fractions. The first 
necessary step is to determine the variables that significantly affect the soil-cutting element system. The 
relevant characteristics of the soil are those that have a fairly direct relationship to the forces or movements. 
According to the generally accepted notation, the set of parameters that affect the process of mechanical 
cutting of soil containing stony fractions can be expressed as follows:
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In (2), each group is dimensionless, does not depend on any particular parameter, and to ensure 
similarity between the parameters of the prototype of the nature – Ptni and the model – Ptmi, the scale 
value – kLi is introduced: 
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In this case, the process of cutting soil with stony fractions is described by the same differential 
equations of equilibrium, continuity conditions, stress state equations based on the general provisions of 
the theory of elasticity and the theory of plasticity. The cutting speed, which varies in the range (observed 
in production conditions), does not significantly affect the value of the sand cutting force [19]. The 
determination of the cutting resistance of the soil containing the stony fractions is based on the theory of 
the limiting equilibrium of a loose medium [20]. The design scheme of the soil resistance acting on the 
cutting element of the earthmoving machine is shown in Fig. 1, where it is possible to conditionally 
distinguish the stressed zones of homogeneous soil and the zones around the stony inclusion in 
compliance with the condition of geometric similarity. Surface of the cutting element (bucket tooth) and 
stony fractions are represented by a set of elementary retaining walls and to follow them accordingly 
elemental powers of resistance of the soil cutting dPо homogeneous zones (zone I) and the resistance of 
the soil around the stony dPs (zone II, zone III). The destruction of the soil occurs when the maximum 
stress state is reached on the sliding surfaces. For elementary retaining walls, to determine the force of 
resistance to cutting, you can apply the forces of ground resistance [20]. The cutting force of the soil 
containing the stony fractions is balanced by the forces of the resistance of the soil to cutting: 

rscs РР = .                                                                      (4)  
The soil containing the stony fractions has a complex stress state. Taking into account the many 

factors that affect the process of cutting the soil, for practical calculations, an approximate determination 
of the resistance force of the soil containing the stony fractions is carried out. 
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cutting dPо homogeneous zones (zone I) and the resistance of the soil around the stony dPs (zone II, zone 
III). The destruction of the soil occurs when the maximum stress state is reached on the sliding surfaces. For 
elementary retaining walls, to determine the force of resistance to cutting, you can apply the forces of ground 
resistance [22]. The cutting force of the soil containing the stony fractions is balanced by the forces of the 
resistance of the soil to cutting:

rscs РР = .						      (4) The soil containing the stony fractions has a complex stress state. Taking into account the many factors 
that affect the process of cutting the soil, for practical calculations, an approximate determination of the 
resistance force of the soil containing the stony fractions is carried out.

The Prs force includes the ground resistance force on the surface of the cutting element Ph and the resistance 
force on the surface (around) the rock particle Ps, as well as the force of pushing the stone to the surface of 
the Pg

Рrs = Рh + Ps + Pg.                      			   (5)
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height retaining walls, I, II, III – coverage of passive earth pressure.   
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determines the rotation of Rs by an angle µi with a given step, relative to the oa axis (Fig. 1b).

The curved surface of the elementary ball belts is approximated by a straight surface, and the approximation 
error depends on the size of the split step (Fig. 2). The depth of the detrital-stone particle in the soil mass is 
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Fig. 2. Scheme for determining the resistance force on the surface of a stony fraction: 1 – elementary 
retaining wall, dE – elementary resultant ground pressure, dEv - vertical and dEg – horizontal components 
of dE. 
 

The range of variation of the angle of rotation Rs from the oa axis towards the day surface and 
deep into the soil mass is 0 ... π/2 with a given step - µ. The split step is defined by the expression: 
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The range of variation of the angle of rotation Rs from the oa axis towards the day surface and deep into 
the soil mass is 0 ... π/2 with a given step - µ. The split step is defined by the expression:
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The angle ε is determined by the sine theorem:
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The point of intersection of the secant plane with the particle surface determines the position of the 
elementary retaining strip relative to the oa axis (Fig.1b), characterized by the angle θi, which is determined 
by the expression:
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, where i = 0,1,2,3…n		   (11)
moreover θ0 = 0.
Determine the angles Qi and βi:

4 
 

 
Fig. 2. Scheme for determining the resistance force on the surface of a stony fraction: 1 – elementary 
retaining wall, dE – elementary resultant ground pressure, dEv - vertical and dEg – horizontal components 
of dE. 
 

The range of variation of the angle of rotation Rs from the oa axis towards the day surface and 
deep into the soil mass is 0 ... π/2 with a given step - µ. The split step is defined by the expression: 

  ,                                                                   (8) 
where n is the total number of partitions into elementary strips. 

The inclined height is a constant value in all elementary walls, and is determined by the 
expression:  

2/sin2 sRds =                                                       (9) 
 

The angle ε is determined by the sine theorem: 
( )dsRs /sinsin 1  −=                                    (10) 

 
The point of intersection of the secant plane with the particle surface determines the position of 

the elementary retaining strip relative to the oa axis (Fig.1b), characterized by the angle θi, which is 
determined by the expression: 

, where i = 0,1,2,3…n                                     (11) 
moreover θ0 = 0. 

Determine the angles Qi and βi: 
, where i =0,1,2,3…n                                   (12)  

moreover Q0 = π/2. 
 

 , where i = 0,1,2,3…n                     (13) 
moreover β0 = 0. 

In turn, the height of the elementary strips is determined by the expressions: 
in the direction of the day surface of the ground 

( ) issu dsRhz
i

cos−−= , i = 0,1,2,3…n                                 (14) 
moreover z0 = hs – Rs; 
to the side deep into the ground mass 

( ) issm dsRhz
i

cos+−= ,  i = 0,1,2,3...n                                  (15) 
moreover z0 = hs – Rs . 

The area of an elementary strip is defined by the following expression: 

        , where   i = 0,1,2,3…n                                 (16) 
where dvsi is the average length of the generators of the elementary strip. 

n2/ =

 ii =

 −−= iiQ

ii Q−= 2

dsddF
isi =

θ 
μ 

Rs 
ε 

α 

Rs 

β 

1 III 

dЕ 

I 

β μ 

z 

0 
Рcs 

II 

x 

I-I 
dE 
dEv 

σn 

Q 

μ 
ds dEg 

Rs 

1 

dz 

ξ 

а) b) 

τn 

hs 

 where i =0,1,2,3…n		  (12) 
moreover Q0 = π/2.

 

4 
 

 
Fig. 2. Scheme for determining the resistance force on the surface of a stony fraction: 1 – elementary 
retaining wall, dE – elementary resultant ground pressure, dEv - vertical and dEg – horizontal components 
of dE. 
 

The range of variation of the angle of rotation Rs from the oa axis towards the day surface and 
deep into the soil mass is 0 ... π/2 with a given step - µ. The split step is defined by the expression: 

  ,                                                                   (8) 
where n is the total number of partitions into elementary strips. 

The inclined height is a constant value in all elementary walls, and is determined by the 
expression:  

2/sin2 sRds =                                                       (9) 
 

The angle ε is determined by the sine theorem: 
( )dsRs /sinsin 1  −=                                    (10) 

 
The point of intersection of the secant plane with the particle surface determines the position of 

the elementary retaining strip relative to the oa axis (Fig.1b), characterized by the angle θi, which is 
determined by the expression: 

, where i = 0,1,2,3…n                                     (11) 
moreover θ0 = 0. 

Determine the angles Qi and βi: 
, where i =0,1,2,3…n                                   (12)  

moreover Q0 = π/2. 
 

 , where i = 0,1,2,3…n                     (13) 
moreover β0 = 0. 

In turn, the height of the elementary strips is determined by the expressions: 
in the direction of the day surface of the ground 

( ) issu dsRhz
i

cos−−= , i = 0,1,2,3…n                                 (14) 
moreover z0 = hs – Rs; 
to the side deep into the ground mass 

( ) issm dsRhz
i

cos+−= ,  i = 0,1,2,3...n                                  (15) 
moreover z0 = hs – Rs . 

The area of an elementary strip is defined by the following expression: 

        , where   i = 0,1,2,3…n                                 (16) 
where dvsi is the average length of the generators of the elementary strip. 

n2/ =

 ii =

 −−= iiQ

ii Q−= 2

dsddF
isi =

θ 
μ 

Rs 
ε 

α 

Rs 

β 

1 III 

dЕ 

I 

β μ 

z 

0 
Рcs 

II 

x 

I-I 
dE 
dEv 

σn 

Q 

μ 
ds dEg 

Rs 

1 

dz 

ξ 

а) b) 

τn 

hs 

, where i = 0,1,2,3…n	 (13)
moreover β0 = 0.
In turn, the height of the elementary strips is determined by the expressions:
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, i = 0,1,2,3…n	 (14)
moreover z0 = hs – Rs;
to the side deep into the ground mass
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moreover z0 = hs – Rs .
The area of an elementary strip is defined by the following expression:
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, where   i = 0,1,2,3…n	 (16)
where dvsi is the average length of the generators of the elementary strip.
At the time of the limit equilibrium cutting force is balanced by the passive soil pressure applied on the 

surface of the cutting element (zone I, Fig. 1,2), and passive pressure acting on the surface of stony fractions, 
viewed in the direction of cutting (zones II, III, Fig. 1,2). In this regard, the expression for determining dvs 
takes into account part of the length of the generators of the elementary strip:
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where j = 1 is a steep area, j = 2 is an intermediate area, j = 3 is a flat area, and j = 4 is a polyline area. 
Now substituting in (27) the expressions (19), (24) we get the formula for the resistance force to 
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where γs is the volume weight of the stone, and fs is the coefficient of friction of the stone with the ground. 
Thus, on the basis of formulas (5) and (6), taking into account formulas (28) and (29), we obtain a 
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where γs is the volume weight of the stone, and fs is the coefficient of friction of the stone with the ground. 
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where γs is the volume weight of the stone, and fs is the coefficient of friction of the stone with the ground. 
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where dEi  is the resultant of the passive ground pressure.
The value of the angle ξi    is determined by the expressions:
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where γs is the volume weight of the stone, and fs is the coefficient of friction of the stone with the ground. 
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Thus, on the basis of formulas (5) and (6), taking into account formulas (28) and (29), we obtain a 

generalized dependence for calculating the cutting resistance force of a soil containing a spherical stony 
particle under a steady state, with a sharp cutting element: 

( ) ( ) ( )

( ) 34coscoscos
2

sin

sintansin

3
4

1
1

1

2

0
2

0
2

sss

j

j
iii

ni

i
is

sрssrs

fRdER

bAHhAР
s





+







++

+++−=

 
=

=
+

=

=

,                          (30)                   

where  i = 1,2,3…n, j = 1…4, ( )  sin5,0 2
sss HhphhaA

i
++= .                                                   

( ) 21++= iis RRd
i



02/  −−= ii Q
2/0  −+= ii Q

		  (28)

5 
 

At the time of the limit equilibrium cutting force is balanced by the passive soil pressure applied 
on the surface of the cutting element (zone I, Fig. 1,2), and passive pressure acting on the surface of stony 
fractions, viewed in the direction of cutting (zones II, III, Fig. 1,2). In this regard, the expression for 
determining dvs takes into account part of the length of the generators of the elementary strip: 

, where i = 0,1,2,3…n                                    (17) 

isi RR cos= , where i = 0,1,2,3…n                                              (18) 
moreover R0 = Rs. 

Then: ( )1
2 coscos

2
sin ++= iisi RdF  , where  i = 0,1,2,3…n .                                                     (19) 

The elementary force of the cutting resistance on the surface of the stony fraction is equal to: 
igs dFdEdР

ii
=  .                                                           (20) 

In turn, the tangent of the pressure component to the ground cutting path is defined as: 
iig dEdЕ

i
cos= ,                                                         (21) 

where dEi  is the resultant of the passive ground pressure. 
The value of the angle ξi    is determined by the expressions: 

, if (Q + φ0) < π/2 ;                                      (22) 
, if (Q + φ0) > π/2 .                                      (23)  

The resultant of the ground pressure is determined by the dependence: 
22

ii nnidE  += .                                               (24) 

The normal (as hydrostatic) ground pressure on the elementary strips [20] is determined by the 
formula: 

HaHpz iini
−++=  )( ,  i = 1,2,3...n,                                       (25) 

where, zi is the height of elementary spherical strips on the surface of a stony fraction; 
and the tangential ground pressure on the elementary strips [20] is determined by the expression: 

( ) 0tan H
ii nn += , i = 1,2,3...n.                                                    (26) 

The tangential drag force is equal to the sum of the elementary ground cutting resistance forces 
dРsi 


=

=

=

=

=
4

1 1

j

j
s

ni

i
ss ij

dPPР ,                                                             (27)  

where j = 1 is a steep area, j = 2 is an intermediate area, j = 3 is a flat area, and j = 4 is a polyline area. 
Now substituting in (27) the expressions (19), (24) we get the formula for the resistance force to 

cutting the soil on the surface of the stony fraction: 
 

( ) 
=

=
+

=

=








+=

4

1
1

1

2 coscoscos
2

sin
j

j
iii

ni

i
iss dERР                   (28) 

34 3
sssg fRP = ,                                                        (29) 

where γs is the volume weight of the stone, and fs is the coefficient of friction of the stone with the ground. 
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where dEi  is the resultant of the passive ground pressure. 
The value of the angle ξi    is determined by the expressions: 
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where j = 1 is a steep area, j = 2 is an intermediate area, j = 3 is a flat area, and j = 4 is a polyline area. 
Now substituting in (27) the expressions (19), (24) we get the formula for the resistance force to 
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where γs is the volume weight of the stone, and fs is the coefficient of friction of the stone with the ground. 
Thus, on the basis of formulas (5) and (6), taking into account formulas (28) and (29), we obtain a 

generalized dependence for calculating the cutting resistance force of a soil containing a spherical stony 
particle under a steady state, with a sharp cutting element: 
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The analysis of the dependence (30) shows that the cutting resistance force is influenced by the parameters 

of the strength and cutting of the soil, the radius of the stony fraction, and the influence of the latter on the 
cutting resistance force occurs according to a quadratic dependence. 

When (hs – Rs) < Rs, the rocky inclusion begins to protrude beyond the day surface of the ground, a 
“passive part” of the stone appears and the boundary of its appearance is determined by the critical value of 
µcr:
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The change in the cutting width when the rocky inclusion protrudes beyond the cutting width is 
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where b is the cutting width of a homogeneous ground, ψss – lateral angle of destruction. 

 

Fig. 3. Scheme for determining the volume of the destroyed soil with a rocky inclusion: 4 - graph of the 
change in the resistance force of the soil, Lfs - cutting length (experimentally determined), F1, F2, F3, F4, F5 
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where b is the cutting width of a homogeneous ground, ψss – lateral angle of destruction.
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The volume of the soil of the central part and the lateral destruction (Fig.3) calculated by the formulas:
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where ns = 0, with the free cutting, ns = 1, when polubarinova cutting, ns = 2, at locked cuts. 

Experimental work was carried out on cutting the soil containing stony fractions on the stand [23] (Table 
1). 

Table 1 - Initial experience data 
 Ground Rs, m C, Па γ, n/m3 φ, 0 φ0, 0 α, 0 h, m b, m ηsps kh 
 Sandy loam 0.064-0.108 15500 19790 32 25.6 45 0.15 0.15 1.59…1.66 0…0.05 

 
Figure 4 shows a comparative analysis of the cutting resistance force according to different 

methods and experiments. 

  
The analysis shows that the discrepancy between the values of the resistance force according to 

the methods of the authors and E.Kravtsov is in the range of 29.86...38.12% when cutting sandy loam 
containing stony fractions with an average radius of 0.064...0.108 m. Obviously, this error is caused by 
the fact that in [13] the cutting resistance force is determined without taking into account the effects of the 
angle, cutting width, features of the normal and tangent components of the passive ground pressure of a 
homogeneous and rocky zone. The error in the forces of resistance to cutting soil with stones between the 
authors ' method and the experiment is 4.25...10.55 %, and between the method of E.Kravtsov and the 
results of the experiment – 26.06...32.15 %. It should be noted that the discrepancy in the resistance force 
determined by the E.Kravtsov method increases with the increase in the size of the stone and the cohesive 
properties of the soil.  

According to the data [11], a computational analysis of the dynamics of the cutting resistance 
force as a function of the number of stony fractions in the ground is carried out (Fig.5). 
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where ns = 0, with the free cutting, ns = 1, when polubarinova cutting, ns = 2, at locked cuts.
Experimental work was carried out on cutting the soil containing stony fractions on the stand [25] (Table 1).

Table 1 - Initial experience data

 
Ground

Rs, m C, Па γ, n/m3 φ, 0 φ0, 
0 α, 0 h, m b, m ηsps kh

 Sandy loam 0.064-0.108 15500 19790 32 25.6 45 0.15 0.15 1.589…1.663 0…0.05

Figure 4 shows a comparative analysis of the cutting resistance force according to different methods and 
experiments.
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 The analysis shows that the discrepancy between the values of the resistance force according to the 
methods of the authors and E. Kravtsov is in the range of 30.29...40.32% when cutting sandy loam containing 
stony fractions with an average radius of 0.064...0.108 m. Obviously, this error is caused by the fact that in 
[11] the cutting resistance force is determined without taking into account the effects of the angle, cutting 
width, features of the normal and tangent components of the passive ground pressure of a homogeneous and 
rocky zone. The error in the forces of resistance to cutting soil with stones between the authors ‘ method and 
the experiment is -5.21...9.53%, and between the method of E. Kravtsov and the results of the experiment – 
32.79...37.69%. It should be noted that the discrepancy in the resistance force determined by the E. Kravtsov 
method increases with the increase in the size of the stone and the cohesive properties of the soil.  

According to the data [9], a computational analysis of the dynamics of the cutting resistance force as a 
function of the number of stony fractions in the ground is carried out (Fig.5).

The analysis shows that with an increase in the content of stones, the values of the angle of friction of the 
soil against the metal and the specific cohesion of the soil increase, which ultimately cause an increase in the 
resistance force of the soil-stone mixture to cutting. 

Conclusions the perspective of the methodology application. Soils containing stony fractions can be 
represented as a mechanical mixture of soil with stony fractions. The heterogeneity and random content 
of rock particles in the soil have a significant impact on the strength of the soil resistance to cutting. The 
similarity principles allow the use of passive ground pressure components to develop an analytical model of 
the cutting resistance force. Its value is influenced by the strength parameters and the cutting geometry of the 
soil, the radius of the stony fractions and the structural effect. The influence of the radius of the stone on the 
strength of the resistance to cutting occurs according to the quadratic dependence. 

The above methodology allows us to develop methods for predicting the strength of resistance to cutting 
of soil containing stony fractions of ellipsoid geometric shape.

Тургумбаев Ж.Ж.1*, Тургунбаев М.С.2

1И. Раззаков атындағы Қырғыз мемлекеттік техникалық университеті, Бішкек, Қырғызстан;
2Талас мемлекеттік университеті, Талас, Қырғызстан. 

E-mail: jenishtur@gmail.com 

ТАСТЫ ҚОСЫЛЫСЫ БАР ТОПЫРАҚТЫ КЕСУГЕ ҚАРСЫ ТҰРУ КҮШІН БОЛЖАУ

Аннотация. Тасты қоспалары бар топырақтарды әр түрлі тасты қоспалары бар топырақ-тас қоспасы 
ретінде қарастыруға болады. Бұл механикалық қоспа құрамы негізінен кездейсоқ жүктемелердің 
пайда болуы жер қазу машинасының металл конструкциясының мерзімінен бұрын істен шығуынан, 
оны пайдалану кезінде топырақтың құнын арттыруы болып табылады. 	

Тасты қосындылары бар топырақты кесуге қарсы тұру мақсатында  болжау үшін борпылдақ ортаның 
шекті тепе-теңдік теориясы, тәуелділік параметрлерін өлшемді талдау негізінде аналитикалық модель 
жасалды. Кесу элементінің әрекет ету координатына байланысты тасты қосылумен топырақтың бұзылу 
түрлері анықталды. Тәжірибелік мәліметтермен салыстырғанда әзірленген модельдің дұрыстығы 
бағаланды. Гетерогенділіктен және тасты қосындылары бар топырақтың құрылымдық апатынан 
туындайтын кесуге қарсылық күшінің динамикасына есептеу талдауы жүргізілді. 		

Fig. 5. Computational analysis 
of the change in the cutting 

resistance force depending on 
the content of stones in the 

ground
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Түйінді сөздер: Тасты қосу, тасты қосу кесуге төзімділік күші, аналитикалық модель, борпылдақ 
ортаның шекті тепе-теңдік теориясы, өлшемді талдау, құрылымдық күй, гетерогенділік, құрылымдық 
апат бар топырақ.
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ПРОГНОЗИРОВАНИЕ СИЛЫ СОПРОТИВЛЕНИЯ РЕЗАНИЮ ГРУНТА 
СОДЕРЖАЩЕГО КАМЕНИСТОЕ ВКЛЮЧЕНИЕ

Аннотация. Грунты, содержащие каменистые включения можно представить, как грунтово-
каменную смесь с разным содержанием каменистых включений. Указанная механическая смесь 
главным образом является источником генерации случайных нагружений и преждевременных 
усталостных разрушений металлоконструкции землеройной машины в процессе ее эксплуатации, 
повышения себестоимости разработки грунтов. 

С целью прогнозирования силы сопротивления резанию грунта, содержащего каменистые 
включения разработана аналитическая модель на основе теории предельного равновесия сыпучей 
среды, размерного анализа параметров зависимости. Установлены виды разрушения грунта с 
каменистым включением в зависимости от координаты действия режущего элемента. Оценена 
корректность разработанной модели в сопоставлении с экспериментальными данными. Проведен 
вычислительный анализ динамики силы сопротивления резанию возникающей от неоднородности и 
структурной случайности грунтов, содержащих каменистые включения. 			 

Ключевые слова: грунт, содержащий каменистое включение, каменистое включение, сила 
сопротивления резанию, аналитическая модель, теория предельного равновесия сыпучей среды, 
размерный анализ, структурное состояние, неоднородность, структурная случайность.
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